Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol

Catalytic upgrading of CO2 to value-added chemicals is an important challenge within the chemical sciences. Of particular interest are catalysts which are both active and selective for the hydrogenation of CO2 to methanol. PdZn alloy nanoparticles supported on TiO2 via a solvent-free chemical vapour impregnation method are shown to be effective for this reaction. This synthesis technique is shown to minimise surface contaminants, which are detrimental to catalyst activity. The effect of reductive heat treatments on both structural properties of PdZn/TiO2 catalysts and rates of catalytic CO2 hydrogenation are investigated. PdZn nanoparticles formed upon reduction showed high stability towards particle sintering at high reduction temperature with average diameter of 3–6 nm to give 1710 mmol kg−1 h of methanol. Reductive treatment at high temperature results in the formation of ZnTiO3 as well as PdZn, and gives the highest methanol yield.

Authors: Hasliza Bahruji, Jonathan Ruiz, Esquius, Michael Bowker, Graham Hutchings, Robert D. Armstrong, Wilm Jones

DOI: 10.1007/s11244-018-0885-6

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement
No 637016.


Cookies are important for the proper functioning of this site. To improve this experience, we use third-party analytic cookies in order to allow us to elaborate statistical information about the user’s activities in this site as well as first party customization cookies to record the user’s acceptance of the use of cookies on this site. By continuing to browse our site, you are agreeing to our use of cookies.OK
For more information on cookies please refer to our privacy and cookie policy.